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A new construction method of two-dimensional (2D) variable-weight optical orthogonal codes (VWOOCs)
is proposed for high-speed optical code-division multiple-access (OCDMA) networks supporting multiple
qualities of services (QoS). The proposed codes have at most one-pulse per wavelength (AM-OPPW)
property. An upper bound of the codeword cardinality of the 2D VWOOCs with AM-OPPW property
is derived. It is then shown that the constructed codes have ideal correlation properties and optimal
cardinality. Moreover, the code length and the bit-error-rate (BER) performance of the proposed codes
are compared with those of the codes proposed previously.
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Optical code-division multiple-access (OCDMA) tech-
nique has gained significant attention in optical com-
munication networks due to its potential for simplicity
in all-optical implementation, inherent security against
interception, and asynchronous access[1,2]. The user ad-
dress code with better performance, such as optical or-
thogonal code (OOC)[1,3,4], is the basis for the implemen-
tation of an OCDMA network.

Recently, there are more requirements on the high-
speed OCDMA system supporting multiple qualities of
services (QoS). One-dimensional (1D) variable- weight
(VW) OOCs were proposed by Yang[5] for this pur-
pose. Due to the unipolar characteristic of optical sig-
nals, 1D optical codes[5−7] are always very long so that
they reduce multiple-access interference (MAI) and in-
crease the codeword cardinality. To overcome this draw-
back, much attention has been paid to two-dimensional
(2D) VWOOCs recently[8−11]. The 2D optical en-
coder/decoder can be realized by fiber Bragg gratings
(FBGs)[12,13]. However, due to the use of 1D VWOOCs
as time spreading patterns in the 2D VWOOCs[8−11], the
code length will also be large and thus the data rate will
decrease. Therefore, codes with shorter lengths than that
of previous codes[8−11] need to be constructed to meet the
requirements of high-speed multimedia transmissions.

To simplify practical implementation and provide scal-
ability to OCDMA networks[3,11], 2D VWOOCs with
at most one-pulse per wavelength (AM-OPPW)[3] prop-
erty were proposed recently by Piao et al.[11] based
on the combinatorial method and computer searching.
The codes have ideal correlation properties, i.e., maxi-
mum out-of-phase autocorrelation equal to 0 and cross-
correlation equal to 1. An upper bound of the codeword
cardinality was also derived[11]. However, the set of code-
word cardinality distributions was not considered[11].

In this letter, a new construction method of 2D
VWOOCs with AM-OPPW property is proposed for
high-speed OCDMA networks. An upper bound of the
codeword cardinality is derived to show the optimality of
the presented construction. It is also shown that the con-

structed codes have ideal correlation properties. More-
over, the code length and the bit-error-rate (BER) per-
formance of the proposed codes are compared with those
of the codes proposed previously.

Throughout this letter, let W , Λ, and Q denote the sets
{w1, w2, · · · , wl}, {λ1

a, λ2
a, · · · , λl

a}, and {q1, q2, · · · , ql},
respectively. Without loss of generality, we assume that
w1 ≤ w2 ≤ · · · ≤ wl. Let Zn = {0, 1, · · · , n − 1} denote
the group of residues modulo n. |A| indicates the cardi-
nality of a set A.

A 2D (u×v, W, Λ, λc, Q)-VWOOC, C, is a collection of
binary (0,1) u × v code matrices (codewords) such that
the following three properties hold.

1) Weight distribution: each codeword in C has a Ham-
ming weight contained in the set W ; furthermore, there
are exactly qk · |C| codewords of weight wk, i.e., qk indi-
cates the fraction of codewords of weight wk.

2) Auto-correlation: for any X = (xi,j) ∈ C with Ham-
ming weight wk ∈ W and any integer τ, 0 < τ ≤ v − 1,

RX,X(τ) =
u−1∑
i=0

v−1∑
j=0

xi,jxi,j+τ ≤ λk
a. (1)

3) Cross-correlation: for any X = (xi,j), Y = (yi,j) ∈
C such that X �= Y and any integer τ ,

RX,Y (τ) =
u−1∑
i=0

v−1∑
j=0

xi,jyi,j+τ ≤ λc. (2)

All subscripts here are reduced modulo v so that pe-
riodic correlations are considered. In the following, the
notation (u×v, W, 0, 1, Q)-VWOOC is used to denote an
(u×v, W, Λ, λc, Q)-VWOOC with ideal correlation prop-
erties, i.e., λ1

a = λ2
a = · · · = λl

a = 0 and λc = 1.
Let X be a code matrix of a (u × v, W, Λ, λc, Q)-

VWOOC with weight w and some integers ri ∈ Zu,
ci ∈ Zv such that xr0,c0 = xr1,c1 = · · · = xrw−1,cw−1 =
1, where 0 ≤ r0 ≤ r1 ≤ · · · ≤ rw−1 ≤ u − 1.
The fact that xri,ci = 1 means an optical pulse of
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wavelength ri at the time chip ci. The set BX =
{(r0, c0), (r1, c1), · · · , (rw−1, cw−1)} associated with X is
called the position block of X .

A cyclic (n, W, 1, Q) difference family (DF)[7] is a
collection of subsets (called blocks) of Zn, A =
{A0, A1, · · · , At−1}, where the block size |Ai| ∈ W ,
i = 0, 1, · · · , t − 1, such that the multiset union
t−1⋃
i=0

{x − y|x, y ∈ Ai, x �= y} = Zn\{0}.
The (n, W, 1, Q)-DF is used here to construct 2D

VWOOC. The construction steps are described as fol-
lows.

1) Wavelength hopping patterns. Let A ={Ah =
{ah,0, ah,1, · · · , ah,wk−1}, h = 0, 1, · · · , s − 1} be an
(n, W, 1, Q)-DF over Zn with cardinality s, sk blocks
of size wk, and qk = sk/s. The wavelength hopping
patterns are Ar

h = {ah,0 + r, ah,1 + r, · · · , ah,wk−1 +r},
h = 0, 1, · · · , s − 1, r = 0, 1, · · · , n − 1, where “+” is
modulo-n addition.

2) Time spreading patterns. Take a prime p ≥ wl and
let the time spreading patterns be Tj = {j ·0, j ·1, · · · , j ·
(wk −1)}, j = 0, 1, · · · , p−1, where “·” is modulo-p mul-
tiplication.

3) 2D VWOOC codewords. The position block of an
n × p codeword based on Ar

h and Tj is Br,j
h = {(ah,0 +

r, j · 0), (ah,1 + r, j · 1), · · · , (ah,wk−1 + r, j · (wk − 1))}.
The set of position blocks of the 2D VWOOC is F =⋃s−1

h=0

⋃n−1
r=0

⋃p−1
j=0 Br,j

h .
In the following, an upper bound of the codeword car-

dinality of a (u × v, W, 0, 1, Q)-VWOOC is derived to
show the optimality of the presented construction. Let
F be the set of position blocks of a (u × v, W, 0, 1, Q)-
VWOOC. For any BX ∈ F , the list of differences from
BX is defined as

ΔBX = {(ci − cj)ri,rj |(ri, ci), (rj , cj) ∈ BX , i �= j}, (3)

where the subtraction “−” is performed in Zv. It is ob-
vious that ΔBX contains exactly w(w − 1) distinct ele-
ments, i.e.,

|ΔBX | = w(w − 1). (4)

Further, let ΔF = ∪
X∈F

ΔBX be the differences from F .

Example 1 A codeword X with u = 4,
v = 3, and weight 3 is shown in Fig. 1,
where BX = {(0, 0), (1, 1), (3, 1)} and ΔBX =
{11,0, 20,1, 13,0, 20,3, 03,1, 01,3}.

The following result provides an equivalent condition
to keep the maximum cross-correlation value between
any two codewords at most one.

Lemma 1 Let X and Y be two distinct u × v code-
words. Then, the cross-correlation property in expression
(2) will hold, i.e., RX,Y (τ) ≤ 1 for all 0 ≤ τ ≤ v − 1, if
and only if ΔBX and ΔBY are disjoint.

Fig. 1. Illustration of a codeword with u=4, v=3, and
weight 3.

Proof Let BX = {(r0, c0), (r1, c1), · · · , (rwk−1, cwk−1)}
and BY = {(s0, t0), (s1, t1), · · · , (swl−1, twl−1)} be the
position blocks of any two distinct codewords X and Y ,
respectively. First, we prove that if ΔBX ∩ ΔBY = φ
(empty set), then RX,Y (τ) ≤ 1 for all 0 ≤ τ ≤ v − 1. If
there are at least two coincidences of nonzero elements
in any relative cyclic time shift τ of these two codewords,
then (ri, ci + τ) = (si′ , ti′) and (rj , cj + τ) = (sj′ , tj′)
must hold simultaneously, where i �= j, i′ �= j′, i, j ∈
{0, 1, · · · ,wk−1}, and i′, j′ ∈ {0, 1, · · · , wl−1}. However,
these conditions cannot be both true at the same time
because they require that (ci − cj)ri,rj = (ti′ − tj′)si′ ,sj′ ,
where (ci − cj)ri,rj ∈ ΔBX and (ti′ − tj′ )si′ ,sj′ ∈ ΔBY .
This violates the condition ΔBX ∩ ΔBY = φ.

Next, we show that if RX,Y (τ) ≤ 1 for all 0 ≤
τ ≤ v − 1, then ΔBX ∩ ΔBY = φ. Suppose that
ΔBX ∩ ΔBY �= φ, then there exist two pairs of ele-
ments (ri, ci), (rj , cj) ∈ BX and (si′ , ti′), (sj′ , tj′) ∈ BY ,
respectively, such that (ci − cj)ri,rj = (ti′ − tj′)si′ ,sj′ ,
where (ci − cj)ri,rj ∈ ΔBX and (ti′ − tj′)si′ ,sj′ ∈ ΔBY .
The equality (ci − cj)ri,rj = (ti′ − tj′)si′ ,sj′ implies
ri = si′ , rj = sj′ , and ti′ − ci = tj′ − cj . If we
let τ = ti′ − ci = tj′ − cj , then it is obtained that
(ri, ci + τ) = (si′ , ti′) and (rj , cj + τ) = (sj′ , tj′). In
other words, there are two coincidences of nonzero ele-
ments in a cyclic time shift τ of these two codewords.
This contradicts with the condition RX,Y (τ) ≤ 1 for all
0 ≤ τ ≤ v − 1. The proof is completed.

Let Φ(u × v, W, 0, 1, Q) = max{|C| : C is a (u ×
v, W, 0, 1, Q)-VWOOC} and let [x] denote the integer
part of x. An upper bound of Φ(u × v, W, 0, 1, Q) is
obtained.

Lemma 2 Φ(u × v, W, 0, 1, Q) ≤
[

uv(u−1)
Pl

k=1 qkwk(wk−1)

]
.

Proof Suppose F is the corresponding set of posi-
tion blocks of the code C. For dα,β ∈ ΔF , since d can
be taken from Zv and α, β ∈ Zu × Zu, α �= β, the total
number of distinct differences dα,β in ΔF is at most
v · u(u − 1). From Eq. (4) and Lemma 1, we have∑l

k=1 qkΦwk(wk − 1) ≤ uv(u − 1), i.e.,

Φ(u × v, W, 0, 1, Q) ≤ uv(u − 1)∑l
k=1 qkwk(wk − 1)

. (5)

A (u × v, W, 0, 1, Q)-VWOOC is optimal if Φ(u ×
v, W, 0, 1, Q) meets the upper bound in Lemma 2.

From the presented construction, we can see that the
number of the codewords with weight wk in the pro-
posed code is sknp, the codeword cardinality is snp,
and the fraction of the codewords with weight wk is
qk = sk/s. Since there is at most one pulse per wave-
length in each codeword, it is obvious that each code-
word with weight wk has the maximum out-of-phase
auto-correlation λk

a = 0, k = 1, 2, · · · , l. Further, we have
the following result.

Lemma 3 The proposed code is an optimal (n ×
p, W, 0, 1, Q)-VWOOC.

Proof From the above discussions, we only need to
prove that λc = 1. From Lemma 1, it is sufficient to
show that any dα,β , where d ∈ Zp, α, β ∈ Zn × Zn,
and α �= β, occurs at most once in ΔF . Since A is a
DF and p is a prime, there exists a block Br,j

h ∈ F such
that α = ah,t1+r, β = ah,t2+r, and d = jah,t1−jah,t2 . In
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Table 1. Codewords of a
(9×3,{2,3},0,1,{1/2,1/2})-VWOOC Based on

A0=[0,4], A1=[0,1,3], and r=0, j=0,1,2

B0,0
0 ={(0, 0), (4, 0)} B0,0

1 ={(0, 0), (1, 0), (3, 0)}
B0,1

0 ={(0, 0), (4, 1)} B0,1
1 ={(0, 0), (1, 1), (3, 2)}

B0,2
0 ={(0, 0), (4, 2)} B0,2

1 ={(0, 0), (1, 2), (3, 1)}

Table 2. Comparison of the Code Length Between
Proposed Codes and Known Codes

W Q

Minimum Length Minimum Length

of the Proposed of Liang’s

Codes Codes

{3,4} {1/2,1/2} 5 19

{3,4} {1/3,2/3} 5 31

{3,6} {1/2,1/2} 7 37

{3,6} {1/3,2/3} 7 67

{4,6,7} {1/3,1/3,1/3} 7 85

{4,6,7} {1/4,1/4,2/4} 7 127

addition, it is not difficult to see that the total number of
differences in ΔF is at most n(n − 1)p. Therefore, each
difference occurs exactly once in ΔF . This completes the
proof.

Example 2 Let p = 3 and A = {A0, A1} be a
(9, {2, 3}, 1, {1/2, 1/2})-DF, where A0 = {0, 4}, A1 =
{0, 1, 3}. The partial position blocks of a (9 ×
3, {2, 3}, 0, 1, {1/2, 1/2})-VWOOC from A0, A1 with r =
0, j = 0, 1, 2 are shown in Table 1. This code has two
Hamming weights w1 = 2, w2 = 3, and the codeword
cardinality is 54.

Now, we compare the code length of the proposed codes
with that of the previous codes. We first recall some no-
tations introduced by Wu et al [7]. For each qk ∈ Q,
write qk = bk/ak, where ak, bk are integers and gcd
(ak, bk) = 1, 1 ≤ k ≤ l. Let f(Q) be the least com-
mon multiple of a1, a2, · · · , al, and qk = fk(Q)/f(Q).
Let w =

∑l
k=1 fk(Q)wk(wk − 1). For an (n, W, 1, Q)-

VWOOC, in order to make the codewords set nonempty,
the code length n is at least w + 1, i.e., n ≥ w + 1.

Without loss of generality, we choose the codes pre-
sented by Liang et al.[8] for comparison. The numerical
results are shown in Table 2, where the minimum code
lengths for the different sets W and Q are listed. On
the whole, the proposed codes have shorter code lengths
than Liang’s codes. With the code weight in W increas-
ing, the length of Liang’s codes increases rapidly while
the length of the proposed codes increases slowly. There-
fore, the proposed codes are more suitable for high-speed
OCDMA networks because of their shorter code length.

The performance of the OCDMA system depends on
the code weights of the local address matrix and the arriv-
ing address matrix. We now analyze the performance of
an OCDMA system using the proposed (n×p, W, 0, 1, Q)-
VWOOC. Let qk, k = 1, 2, · · · , l, denote the probability
of getting one hit between a local address matrix and any
arriving address matrix with the same code weight wk.

Then

qk =
(p − 1)wk + pwk(wk − 1) + pw2

k(sk − 1)
2p(npsk − 1)

, (6)

where (p−1)wk represents the number of hits which come
from the codewords with the same h and r but a different
j, pwk(wk − 1) is the number of hits which come from
the codewords with the same h but different r and j,
pw2

k(sk − 1) denotes the number of hits which originate
from the codewords with same weight wk but different h.
The factor 1/2 comes from the assumption of equiproba-
ble on-off data bit transmission, the factor p is the code
length, and the factor npsk − 1 is the number of the ad-
dress matrices with the same weight wk except the local
address matrix. Briefly,

qk =
pw2

ksk − wk

2p(npsk − 1)
. (7)

Since the number of hits in every time slot between two
address matrices is no greater than one, the chip collision
probability between a local address matrix with weight
wk and an arriving address matrix with weight wk′ is
given by

qk,k′ =
pwkwk′sk′

2p · npsk′
=

wkwk′

2np
. (8)

Suppose there are Nk, k = 1, 2, · · · , l, active users with
weight wk that coexist in the system. The error prob-
ability Pe,wk

, k = 1, 2, · · · , l, of the user with address
matrices of weight wk is given by[9]

Pe,wk
=

1
2
− 1

2

wk−1∑
e1+···+el=0

(
Nk

ek

)
(qk)ek · (1 − qk)Nk−1−ek

·
l∏

k′=1,k′ �=k

(
Nk′

ek′

)
(qk,k′ )ek′ · (1 − qk,k′ )Nk′−ek′ . (9)

For a fair comparison, we assume that the codewords
are with approximately the same code size[14], which is
defined as the product of the number of wavelengths
and the number of time slots. Figure 2 shows the BER
performance versus the number of active users of the
(16×73, {3, 6}, {1, 1}, 1, {1/2, 1/2})-VWOOC[8] and
the proposed (73×17, {3, 6}, 0, 1, {1/2, 1/2})-VWOOC.
Here, we consider different types of active users. Figure
2 shows that the BER performance decreases as the
total number of active users increases and the users
with larger-weight codewords perform better than those
with smaller-weight codewords. In addition, we observe
that the BER performances of the two codes are nearly
identical because both of the codes have the same cross-
correlation constraint and approximately the same code
size.

Figure 3 shows the BER performance versus the num-
ber of active users of the (16×73, {3,4,6}, {1,1,2}, 1,
{1/3, 1/3, 1/3})-VWOOC[10] and the proposed (97×13,
{3,4,6}, 0, 1, {1/3, 1/3, 1/3})-VWOOC. Numerical re-
sults show that the proposed codes have better BER per-
formance. However, compared with the proposed codes,
the number of the wavelengths of the codes[10] is smaller
and thus the channel-spacing may be larger. Therefore,
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Fig. 2. BER performance versus the number of active users
of the (16×73, {3,6}, {1, 1}, 1, {1/2,1/2})-VWOOC[8] and
the proposed (73×17, {3,6}, 0, 1, {1/2,1/2})-VWOOC.

Fig. 3. BER performance versus the number of active users of
the (16×73, {3,4,6}, {1,1,2}, 1, {1/3, 1/3, 1/3})-VWOOC[10]

and the proposed (97×13, {3,4,6}, 0, 1, {1/3, 1/3, 1/3})-
VWOOC.

the adverse impact of the wavelength drift[13] in the sys-
tem may be smaller. In addition, the proposed codes
exist only for prime length.

In conclusion, a new construction method of optimal
2D VWOOCs with AM-OPPW property has been pro-
posed based on DFs. An OCDMA system employing the
proposed codes can support multiple QoS requirements.
It has been shown that the proposed codes have simi-
lar or better BER performance compared with the codes
proposed previously. In particular, since the constructed
codes have shorter code length, it is well suitable for the
high-speed OCDMA networks.
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