Construction of optimal 2D variable－weight optical orthogonal codes for high－speed OCDMA networks

Xiyang Li（李西洋）${ }^{1,2 *}$ ，Pingzhi Fan（范平志）${ }^{1}$ ，and Xianfu Lei（类先富）${ }^{1}$
${ }^{1}$ Provincial Key Lab of Information Coding \＆Transmission，School of Information Science \＆Technology， Southwest Jiaotong University，Chengdu 610031，China
${ }^{2}$ School of Mathematical Sciences，Guangxi Teachers Education University，Nanning 530023，China
＊E－mail：xyli13＠163．com
Received June 1， 2010

Abstract

A new construction method of two－dimensional（2D）variable－weight optical orthogonal codes（VWOOCs） is proposed for high－speed optical code－division multiple－access（OCDMA）networks supporting multiple qualities of services（QoS）．The proposed codes have at most one－pulse per wavelength（AM－OPPW） property．An upper bound of the codeword cardinality of the 2D VWOOCs with AM－OPPW property is derived．It is then shown that the constructed codes have ideal correlation properties and optimal cardinality．Moreover，the code length and the bit－error－rate（BER）performance of the proposed codes are compared with those of the codes proposed previously．

OCIS codes： $060.1155,060.2360,060.4230$. doi：10．3788／COL20100809．0884．

Optical code－division multiple－access（OCDMA）tech－ nique has gained significant attention in optical com－ munication networks due to its potential for simplicity in all－optical implementation，inherent security against interception，and asynchronous access ${ }^{[1,2]}$ ．The user ad－ dress code with better performance，such as optical or－ thogonal code（OOC）${ }^{[1,3,4]}$ ，is the basis for the implemen－ tation of an OCDMA network．
Recently，there are more requirements on the high－ speed OCDMA system supporting multiple qualities of services（QoS）．One－dimensional（1D）variable－weight （VW）OOCs were proposed by Yang ${ }^{[5]}$ for this pur－ pose．Due to the unipolar characteristic of optical sig－ nals，1D optical codes ${ }^{[5-7]}$ are always very long so that they reduce multiple－access interference（MAI）and in－ crease the codeword cardinality．To overcome this draw－ back，much attention has been paid to two－dimensional （2D）VWOOCs recently ${ }^{[8-11]}$ ．The 2D optical en－ coder／decoder can be realized by fiber Bragg gratings （FBGs）${ }^{[12,13]}$ ．However，due to the use of 1D VWOOCs as time spreading patterns in the 2 D VWOOCs ${ }^{[8-11]}$ ，the code length will also be large and thus the data rate will decrease．Therefore，codes with shorter lengths than that of previous codes ${ }^{[8-11]}$ need to be constructed to meet the requirements of high－speed multimedia transmissions．
To simplify practical implementation and provide scal－ ability to OCDMA networks ${ }^{[3,11]}$ ，2D VWOOCs with at most one－pulse per wavelength（AM－OPPW）${ }^{[3]}$ prop－ erty were proposed recently by Piao et al．${ }^{[11]}$ based on the combinatorial method and computer searching． The codes have ideal correlation properties，i．e．，maxi－ mum out－of－phase autocorrelation equal to 0 and cross－ correlation equal to 1 ．An upper bound of the codeword cardinality was also derived ${ }^{[11]}$ ．However，the set of code－ word cardinality distributions was not considered ${ }^{[11]}$ ．
In this letter，a new construction method of 2D VWOOCs with AM－OPPW property is proposed for high－speed OCDMA networks．An upper bound of the codeword cardinality is derived to show the optimality of the presented construction．It is also shown that the con－
structed codes have ideal correlation properties．More－ over，the code length and the bit－error－rate（BER）per－ formance of the proposed codes are compared with those of the codes proposed previously．
Throughout this letter，let W, Λ ，and Q denote the sets $\left\{w_{1}, w_{2}, \cdots, w_{l}\right\},\left\{\lambda_{a}^{1}, \lambda_{a}^{2}, \cdots, \lambda_{a}^{l}\right\}$ ，and $\left\{q_{1}, q_{2}, \cdots, q_{l}\right\}$ ， respectively．Without loss of generality，we assume that $w_{1} \leq w_{2} \leq \cdots \leq w_{l}$ ．Let $Z_{n}=\{0,1, \cdots, n-1\}$ denote the group of residues modulo n ．$|A|$ indicates the cardi－ nality of a set A ．
A 2D $\left(u \times v, W, \Lambda, \lambda_{c}, Q\right)$－VWOOC，$C$ ，is a collection of binary $(0,1) u \times v$ code matrices（codewords）such that the following three properties hold．
1）Weight distribution：each codeword in C has a Ham－ ming weight contained in the set W ；furthermore，there are exactly $q_{k} \cdot|C|$ codewords of weight w_{k} ，i．e．，q_{k} indi－ cates the fraction of codewords of weight w_{k} ．
2）Auto－correlation：for any $X=\left(x_{i, j}\right) \in C$ with Ham－ ming weight $w_{k} \in W$ and any integer $\tau, 0<\tau \leq v-1$ ，

$$
\begin{equation*}
R_{X, X}(\tau)=\sum_{i=0}^{u-1} \sum_{j=0}^{v-1} x_{i, j} x_{i, j+\tau} \leq \lambda_{a}^{k} \tag{1}
\end{equation*}
$$

3）Cross－correlation：for any $X=\left(x_{i, j}\right), Y=\left(y_{i, j}\right) \in$ C such that $X \neq Y$ and any integer τ ，

$$
\begin{equation*}
R_{X, Y}(\tau)=\sum_{i=0}^{u-1} \sum_{j=0}^{v-1} x_{i, j} y_{i, j+\tau} \leq \lambda_{c} . \tag{2}
\end{equation*}
$$

All subscripts here are reduced modulo v so that pe－ riodic correlations are considered．In the following，the notation（ $u \times v, W, 0,1, Q$ ）－VWOOC is used to denote an $\left(u \times v, W, \Lambda, \lambda_{c}, Q\right)$－VWOOC with ideal correlation prop－ erties，i．e．，$\lambda_{a}^{1}=\lambda_{a}^{2}=\cdots=\lambda_{a}^{l}=0$ and $\lambda_{c}=1$ ．
Let X be a code matrix of a $\left(u \times v, W, \Lambda, \lambda_{c}, Q\right)$－ VWOOC with weight w and some integers $r_{i} \in Z_{u}$ ， $c_{i} \in Z_{v}$ such that $x_{r_{0}, c_{0}}=x_{r_{1}, c_{1}}=\cdots=x_{r_{w-1}, c_{w-1}}=$ 1 ，where $0 \leq r_{0} \leq r_{1} \leq \cdots \leq r_{w-1} \leq u-1$ ． The fact that $x_{r_{i}, c_{i}}=1$ means an optical pulse of
wavelength r_{i} at the time chip c_{i}. The set $B_{X}=$ $\left\{\left(r_{0}, c_{0}\right),\left(r_{1}, c_{1}\right), \cdots,\left(r_{w-1}, c_{w-1}\right)\right\}$ associated with X is called the position block of X.

A cyclic $(n, W, 1, Q)$ difference family $(\mathrm{DF})^{[7]}$ is a collection of subsets (called blocks) of $Z_{n}, \mathrm{~A}=$ $\left\{A_{0}, A_{1}, \cdots, A_{t-1}\right\}$, where the block size $\left|A_{i}\right| \in W$, $i=0,1, \cdots, t-1$, such that the multiset union $\bigcup^{t-1}\{$ $\bigcup_{i=0}\left\{x-y \mid x, y \in A_{i}, x \neq y\right\}=Z_{n} \backslash\{0\}$.
The $(n, W, 1, Q)$-DF is used here to construct 2 D VWOOC. The construction steps are described as follows.

1) Wavelength hopping patterns. Let $\mathbf{A}=\left\{A_{h}=\right.$ $\left.\left\{a_{h, 0}, a_{h, 1}, \cdots, a_{h, w_{k}-1}\right\}, h=0,1, \cdots, s-1\right\}$ be an $(n, W, 1, Q)$-DF over Z_{n} with cardinality s, s_{k} blocks of size w_{k}, and $q_{k}=s_{k} / s$. The wavelength hopping patterns are $A_{h}^{r}=\left\{a_{h, 0}+r, a_{h, 1}+r, \cdots, a_{h, w_{k}-1}+r\right\}$, $h=0,1, \cdots, s-1, r=0,1, \cdots, n-1$, where " + " is modulo-n addition.
2) Time spreading patterns. Take a prime $p \geq w_{l}$ and let the time spreading patterns be $T_{j}=\{j \cdot 0, j \cdot 1, \cdots, j$. $\left.\left(w_{k}-1\right)\right\}, j=0,1, \cdots, p-1$, where "." is modulo- p multiplication.
3) 2D VWOOC codewords. The position block of an $n \times p$ codeword based on A_{h}^{r} and T_{j} is $B_{h}^{r, j}=\left\{\left(a_{h, 0}+\right.\right.$ $\left.r, j \cdot 0),\left(a_{h, 1}+r, j \cdot 1\right), \cdots,\left(a_{h, w_{k}-1}+r, j \cdot\left(w_{k}-1\right)\right)\right\}$. The set of position blocks of the 2D VWOOC is $F=$ $\bigcup_{h=0}^{s-1} \bigcup_{r=0}^{n-1} \bigcup_{j=0}^{p-1} B_{h}^{r, j}$.

In the following, an upper bound of the codeword cardinality of a $(u \times v, W, 0,1, Q)$-VWOOC is derived to show the optimality of the presented construction. Let F be the set of position blocks of a $(u \times v, W, 0,1, Q)$ VWOOC. For any $B_{X} \in F$, the list of differences from B_{X} is defined as

$$
\begin{equation*}
\Delta B_{X}=\left\{\left(c_{i}-c_{j}\right)_{r_{i}, r_{j}} \mid\left(r_{i}, c_{i}\right),\left(r_{j}, c_{j}\right) \in B_{X}, i \neq j\right\} \tag{3}
\end{equation*}
$$

where the subtraction "-" is performed in Z_{v}. It is obvious that ΔB_{X} contains exactly $w(w-1)$ distinct elements, i.e.,

$$
\begin{equation*}
\left|\Delta B_{X}\right|=w(w-1) \tag{4}
\end{equation*}
$$

Further, let $\Delta F=\underset{X \in F}{\cup} \Delta B_{X}$ be the differences from F.
Example 1 A codeword X with $u=4$, $v=3$, and weight 3 is shown in Fig. 1, where $B_{X}=\{(0,0),(1,1),(3,1)\}$ and $\Delta B_{X}=$ $\left\{1_{1,0}, 2_{0,1}, 1_{3,0}, 2_{0,3}, 0_{3,1}, 0_{1,3}\right\}$.

The following result provides an equivalent condition to keep the maximum cross-correlation value between any two codewords at most one.

Lemma 1 Let X and Y be two distinct $u \times v$ codewords. Then, the cross-correlation property in expression (2) will hold, i.e., $R_{X, Y}(\tau) \leq 1$ for all $0 \leq \tau \leq v-1$, if and only if ΔB_{X} and ΔB_{Y} are disjoint.

Fig. 1. Illustration of a codeword with $u=4, v=3$, and weight 3 .

Proof Let $B_{X}=\left\{\left(r_{0}, c_{0}\right),\left(r_{1}, c_{1}\right), \cdots,\left(r_{w_{k}-1}, c_{w_{k}-1}\right)\right\}$ and $B_{Y}=\left\{\left(s_{0}, t_{0}\right),\left(s_{1}, t_{1}\right), \cdots,\left(s_{w_{l}-1}, t_{w_{l}-1}\right)\right\}$ be the position blocks of any two distinct codewords X and Y, respectively. First, we prove that if $\Delta B_{X} \cap \Delta B_{Y}=\phi$ (empty set), then $R_{X, Y}(\tau) \leq 1$ for all $0 \leq \tau \leq v-1$. If there are at least two coincidences of nonzero elements in any relative cyclic time shift τ of these two codewords, then $\left(r_{i}, c_{i}+\tau\right)=\left(s_{i^{\prime}}, t_{i^{\prime}}\right)$ and $\left(r_{j}, c_{j}+\tau\right)=\left(s_{j^{\prime}}, t_{j^{\prime}}\right)$ must hold simultaneously, where $i \neq j, i^{\prime} \neq j^{\prime}, i, j \in$ $\left\{0,1, \cdots, w_{k}-1\right\}$, and $i^{\prime}, j^{\prime} \in\left\{0,1, \cdots, w_{l}-1\right\}$. However, these conditions cannot be both true at the same time because they require that $\left(c_{i}-c_{j}\right)_{r_{i}, r_{j}}=\left(t_{i^{\prime}}-t_{j^{\prime}}\right)_{s_{i^{\prime}}, s_{j^{\prime}}}$, where $\left(c_{i}-c_{j}\right)_{r_{i}, r_{j}} \in \Delta B_{X}$ and $\left(t_{i^{\prime}}-t_{j^{\prime}}\right)_{s_{i^{\prime}}, s_{j^{\prime}}} \in \Delta B_{Y}$. This violates the condition $\Delta B_{X} \cap \Delta B_{Y}=\phi$.
Next, we show that if $R_{X, Y}(\tau) \leq 1$ for all $0 \leq$ $\tau \leq v-1$, then $\Delta B_{X} \cap \Delta B_{Y}=\phi$. Suppose that $\Delta B_{X} \cap \Delta B_{Y} \neq \phi$, then there exist two pairs of elements $\left(r_{i}, c_{i}\right),\left(r_{j}, c_{j}\right) \in B_{X}$ and $\left(s_{i^{\prime}}, t_{i^{\prime}}\right),\left(s_{j^{\prime}}, t_{j^{\prime}}\right) \in B_{Y}$, respectively, such that $\left(c_{i}-c_{j}\right)_{r_{i}, r_{j}}=\left(t_{i^{\prime}}-t_{j^{\prime}}\right)_{s_{i^{\prime}}, s_{j^{\prime}}}$, where $\left(c_{i}-c_{j}\right)_{r_{i}, r_{j}} \in \Delta B_{X}$ and $\left(t_{i^{\prime}}-t_{j^{\prime}}\right)_{s_{i^{\prime}}, s_{j^{\prime}}} \in \Delta B_{Y}$. The equality $\left(c_{i}-c_{j}\right)_{r_{i}, r_{j}}=\left(t_{i^{\prime}}-t_{j^{\prime}}\right)_{s_{i^{\prime}}, s_{j^{\prime}}}$ implies $r_{i}=s_{i^{\prime}}, r_{j}=s_{j^{\prime}}$, and $t_{i^{\prime}}-c_{i}=t_{j^{\prime}}-c_{j}$. If we let $\tau=t_{i^{\prime}}-c_{i}=t_{j^{\prime}}-c_{j}$, then it is obtained that $\left(r_{i}, c_{i}+\tau\right)=\left(s_{i^{\prime}}, t_{i^{\prime}}\right)$ and $\left(r_{j}, c_{j}+\tau\right)=\left(s_{j^{\prime}}, t_{j^{\prime}}\right)$. In other words, there are two coincidences of nonzero elements in a cyclic time shift τ of these two codewords. This contradicts with the condition $R_{X, Y}(\tau) \leq 1$ for all $0 \leq \tau \leq v-1$. The proof is completed.
Let $\Phi(u \times v, W, 0,1, Q)=\max \{|C|: C$ is a $(u \times$ $v, W, 0,1, Q)$-VWOOC $\}$ and let $[x]$ denote the integer part of x. An upper bound of $\Phi(u \times v, W, 0,1, Q)$ is obtained.
Lemma $2 \Phi(u \times v, W, 0,1, Q) \leq\left[\frac{u v(u-1)}{\sum_{k=1}^{l} q_{k} w_{k}\left(w_{k}-1\right)}\right]$.
Proof Suppose F is the corresponding set of position blocks of the code C. For $d_{\alpha, \beta} \in \Delta F$, since d can be taken from Z_{v} and $\alpha, \beta \in Z_{u} \times Z_{u}, \alpha \neq \beta$, the total number of distinct differences $d_{\alpha, \beta}$ in ΔF is at most $v \cdot u(u-1)$. From Eq. (4) and Lemma 1, we have $\sum_{k=1}^{l} q_{k} \Phi w_{k}\left(w_{k}-1\right) \leq u v(u-1)$, i.e.,

$$
\begin{equation*}
\Phi(u \times v, W, 0,1, Q) \leq \frac{u v(u-1)}{\sum_{k=1}^{l} q_{k} w_{k}\left(w_{k}-1\right)} \tag{5}
\end{equation*}
$$

A $(u \times v, W, 0,1, Q)$-VWOOC is optimal if $\Phi(u \times$ $v, W, 0,1, Q)$ meets the upper bound in Lemma 2.
From the presented construction, we can see that the number of the codewords with weight w_{k} in the proposed code is $s_{k} n p$, the codeword cardinality is $s n p$, and the fraction of the codewords with weight w_{k} is $q_{k}=s_{k} / s$. Since there is at most one pulse per wavelength in each codeword, it is obvious that each codeword with weight w_{k} has the maximum out-of-phase auto-correlation $\lambda_{a}^{k}=0, k=1,2, \cdots, l$. Further, we have the following result.

Lemma 3 The proposed code is an optimal ($n \times$ $p, W, 0,1, Q)$-VWOOC.
Proof From the above discussions, we only need to prove that $\lambda_{c}=1$. From Lemma 1, it is sufficient to show that any $d_{\alpha, \beta}$, where $d \in Z_{p}, \alpha, \beta \in Z_{n} \times Z_{n}$, and $\alpha \neq \beta$, occurs at most once in ΔF. Since \mathbf{A} is a DF and p is a prime, there exists a block $B_{h}^{r, j} \in F$ such that $\alpha=a_{h, t_{1}}+r, \beta=a_{h, t_{2}}+r$, and $d=j a_{h, t_{1}}-j a_{h, t_{2}}$. In

Table 1. Codewords of a

($9 \times 3,\{2,3\}, 0,1,\{1 / 2,1 / 2\})$-VWOOC Based on $A_{0}=[0,4], A_{1}=[0,1,3]$, and $r=0, j=0,1,2$

$B_{0}^{0,0}=\{(0,0),(4,0)\}$	$B_{1}^{0,0}=\{(0,0),(1,0),(3,0)\}$
$B_{0}^{0,1}=\{(0,0),(4,1)\}$	$B_{1}^{0,1}=\{(0,0),(1,1),(3,2)\}$
$B_{0}^{0,2}=\{(0,0),(4,2)\}$	$B_{1}^{0,2}=\{(0,0),(1,2),(3,1)\}$

Table 2. Comparison of the Code Length Between Proposed Codes and Known Codes

W	Q	Minimum Length of the Proposed Codes	Minimum Length of Liang's Codes
$\{3,4\}$	$\{1 / 2,1 / 2\}$	5	19
$\{3,4\}$	$\{1 / 3,2 / 3\}$	5	31
$\{3,6\}$	$\{1 / 2,1 / 2\}$	7	37
$\{3,6\}$	$\{1 / 3,2 / 3\}$	7	67
$\{4,6,7\}$	$\{1 / 3,1 / 3,1 / 3\}$	7	85
$\{4,6,7\}$	$\{1 / 4,1 / 4,2 / 4\}$	7	127

addition, it is not difficult to see that the total number of differences in ΔF is at most $n(n-1) p$. Therefore, each difference occurs exactly once in ΔF. This completes the proof.

Example 2 Let $p=3$ and $\mathbf{A}=\left\{A_{0}, A_{1}\right\}$ be a $(9,\{2,3\}, 1,\{1 / 2,1 / 2\})-\mathrm{DF}$, where $A_{0}=\{0,4\}, A_{1}=$ $\{0,1,3\}$. The partial position blocks of a $(9 \times$ $3,\{2,3\}, 0,1,\{1 / 2,1 / 2\})$-VWOOC from A_{0}, A_{1} with $r=$ $0, j=0,1,2$ are shown in Table 1. This code has two Hamming weights $w_{1}=2, w_{2}=3$, and the codeword cardinality is 54 .

Now, we compare the code length of the proposed codes with that of the previous codes. We first recall some notations introduced by Wu et al ${ }^{[7]}$. For each $q_{k} \in Q$, write $q_{k}=b_{k} / a_{k}$, where a_{k}, b_{k} are integers and gcd $\left(a_{k}, b_{k}\right)=1,1 \leq k \leq l$. Let $f(Q)$ be the least common multiple of $a_{1}, a_{2}, \cdots, a_{l}$, and $q_{k}=f_{k}(Q) / f(Q)$. Let $w=\sum_{k=1}^{l} f_{k}(Q) w_{k}\left(w_{k}-1\right)$. For an $(n, W, 1, Q)$ VWOOC, in order to make the codewords set nonempty, the code length n is at least $w+1$, i.e., $n \geq w+1$.

Without loss of generality, we choose the codes presented by Liang et al. ${ }^{[8]}$ for comparison. The numerical results are shown in Table 2, where the minimum code lengths for the different sets W and Q are listed. On the whole, the proposed codes have shorter code lengths than Liang's codes. With the code weight in W increasing, the length of Liang's codes increases rapidly while the length of the proposed codes increases slowly. Therefore, the proposed codes are more suitable for high-speed OCDMA networks because of their shorter code length.

The performance of the OCDMA system depends on the code weights of the local address matrix and the arriving address matrix. We now analyze the performance of an OCDMA system using the proposed $(n \times p, W, 0,1, Q)$ VWOOC. Let $q_{k}, k=1,2, \cdots, l$, denote the probability of getting one hit between a local address matrix and any arriving address matrix with the same code weight w_{k}.

Then

$$
\begin{equation*}
q_{k}=\frac{(p-1) w_{k}+p w_{k}\left(w_{k}-1\right)+p w_{k}^{2}\left(s_{k}-1\right)}{2 p\left(n p s_{k}-1\right)} \tag{6}
\end{equation*}
$$

where $(p-1) w_{k}$ represents the number of hits which come from the codewords with the same h and r but a different $j, p w_{k}\left(w_{k}-1\right)$ is the number of hits which come from the codewords with the same h but different r and j, $p w_{k}^{2}\left(s_{k}-1\right)$ denotes the number of hits which originate from the codewords with same weight w_{k} but different h. The factor $1 / 2$ comes from the assumption of equiprobable on-off data bit transmission, the factor p is the code length, and the factor $n p s_{k}-1$ is the number of the address matrices with the same weight w_{k} except the local address matrix. Briefly,

$$
\begin{equation*}
q_{k}=\frac{p w_{k}^{2} s_{k}-w_{k}}{2 p\left(n p s_{k}-1\right)} \tag{7}
\end{equation*}
$$

Since the number of hits in every time slot between two address matrices is no greater than one, the chip collision probability between a local address matrix with weight w_{k} and an arriving address matrix with weight $w_{k^{\prime}}$ is given by

$$
\begin{equation*}
q_{k, k^{\prime}}=\frac{p w_{k} w_{k^{\prime}} s_{k^{\prime}}}{2 p \cdot n p s_{k^{\prime}}}=\frac{w_{k} w_{k^{\prime}}}{2 n p} \tag{8}
\end{equation*}
$$

Suppose there are $N_{k}, k=1,2, \cdots, l$, active users with weight w_{k} that coexist in the system. The error probability $P_{e, w_{k}}, k=1,2, \cdots, l$, of the user with address matrices of weight w_{k} is given by ${ }^{[9]}$

$$
\begin{gather*}
P_{e, w_{k}}=\frac{1}{2}-\frac{1}{2} \sum_{e_{1}+\cdots+e_{l}=0}^{w_{k}-1}\binom{N_{k}}{e_{k}}\left(q_{k}\right)^{e_{k}} \cdot\left(1-q_{k}\right)^{N_{k}-1-e_{k}} \\
\cdot \prod_{k^{\prime}=1, k^{\prime} \neq k}^{l}\binom{N_{k^{\prime}}}{e_{k^{\prime}}}\left(q_{k, k^{\prime}}\right)^{e_{k^{\prime}}} \cdot\left(1-q_{k, k^{\prime}}\right)^{N_{k^{\prime}}-e_{k^{\prime}}} \cdot \tag{9}
\end{gather*}
$$

For a fair comparison, we assume that the codewords are with approximately the same code size ${ }^{[14]}$, which is defined as the product of the number of wavelengths and the number of time slots. Figure 2 shows the BER performance versus the number of active users of the $(16 \times 73,\{3,6\},\{1,1\}, 1,\{1 / 2,1 / 2\})-\mathrm{VWOOC}^{[8]}$ and the proposed $(73 \times 17,\{3,6\}, 0,1,\{1 / 2,1 / 2\})$-VWOOC. Here, we consider different types of active users. Figure 2 shows that the BER performance decreases as the total number of active users increases and the users with larger-weight codewords perform better than those with smaller-weight codewords. In addition, we observe that the BER performances of the two codes are nearly identical because both of the codes have the same crosscorrelation constraint and approximately the same code size.

Figure 3 shows the BER performance versus the number of active users of the $(16 \times 73,\{3,4,6\},\{1,1,2\}, 1$, $\{1 / 3,1 / 3,1 / 3\})$-VWOOC ${ }^{[10]}$ and the proposed $(97 \times 13$, $\{3,4,6\}, 0,1,\{1 / 3,1 / 3,1 / 3\})$-VWOOC. Numerical results show that the proposed codes have better BER performance. However, compared with the proposed codes, the number of the wavelengths of the codes ${ }^{[10]}$ is smaller and thus the channel-spacing may be larger. Therefore,

Fig. 2. BER performance versus the number of active users of the $(16 \times 73,\{3,6\},\{1,1\}, 1,\{1 / 2,1 / 2\})$-VWOOC ${ }^{[8]}$ and the proposed $(73 \times 17,\{3,6\}, 0,1,\{1 / 2,1 / 2\})$-VWOOC.

Fig. 3. BER performance versus the number of active users of the $(16 \times 73,\{3,4,6\},\{1,1,2\}, 1,\{1 / 3,1 / 3,1 / 3\})$-VWOOC ${ }^{[10]}$ and the proposed $(97 \times 13,\{3,4,6\}, 0,1,\{1 / 3,1 / 3,1 / 3\})$ VWOOC.
the adverse impact of the wavelength drift ${ }^{[13]}$ in the system may be smaller. In addition, the proposed codes exist only for prime length.

In conclusion, a new construction method of optimal 2D VWOOCs with AM-OPPW property has been proposed based on DFs. An OCDMA system employing the proposed codes can support multiple QoS requirements. It has been shown that the proposed codes have similar or better BER performance compared with the codes proposed previously. In particular, since the constructed codes have shorter code length, it is well suitable for the high-speed OCDMA networks.

This work was supported by the National Natural Science Foundation of China (No. 60772087), the "111" Project of China (No.111-2-14), and the Research Project of Guanxi Department of Education (No. 200911LX257).

References

1. J. A. Salehi, IEEE Trans. Commun. 37, 824 (1989).
2. J. A. Salehi and C. A. Brackett, IEEE Trans. Commun. 37, 834 (1989).
3. R. Omrani and P. V. Kumar, in Proceedings of IEEE International Symposium in Information Theory 127 (2005).
4. S. Sun, H. Yin, Z. Wang, and A. Xu, J. Lightwave Technol. 24, 1646 (2006).
5. G.-C. Yang, IEEE Trans. Commun. 44, 47 (1996).
6. F.-R. Gu and J. Wu, J. Lightwave Technol. 23, 740 (2005).
7. D. Wu, P. Fan, H. Li, and U. Parampalli, in Proceedings of IEEE International Symposium on Information Theory 448 (2009).
8. W. Liang, H. Yin, L. Qin, Z. Wang, and A. Xu, Photon. Netw. Commun. 16, 53 (2008).
9. Nasaruddin and T. Tsujioka, in Proceeding of IEEE International Conference of Communications 5437 (2008).
10. H. Yin, W. Liang, L. Ma, and L. Qin, Chin. Opt. Lett. 7, 102 (2009).
11. Y.-C. Piao, J. Choe, W. Sung, and D.-J. Shin, IEICE Trans. Commum. E91-B, 3990 (2008).
12. C. Li, Y. Zhu, and X. Zhou, Chinese J. Lasers (in Chinese) 35, 1901 (2008).
13. C. Li, X. Zhou, Y. Zhu, T. Sun, L. Zhao, and B. Song, Acta Opt. Sin. (in Chinese) 29, 3277 (2009).
14. J. Singh and M. L. Singh, IEEE Photon. Technol. Lett. 22, 131 (2010).
